На каждый день | Каменная кладка
ПРОЧНОСТЬ
Каменная кладка хорошо сопротивляется сжатию и относительно плохо - растяжению. Сопротивление кладки растяжению зависит от сцепления раствора с камнем, которое определяется рядом факторов и колеблется в широких пределах. Проектная прочность сцепления может быть обеспечена только при условии соблюдения ряда специальных производственных мероприятий. Поэтому каменные стены и столбы проектируют таким образом, чтобы эксцентрицитет не превышал 0,45h, где h высота сечения; при этом в расчете не учитывают сопротивление кладки растяжению, и внутреннее продольное усилие уравновешивается напряжениями одной лишь сжатой зоны.
Вследствие местных неровностей и неодинаковой плотности раствора в швах при сжатии кладки камни испытывают, кроме напряжений сжатия, также напряжения изгиба и среза. Если модуль упругости камня больше, чем раствора, то в поперечном направлении в камне возникают напряжения растяжения, а в растворе - сжатия. Вертикальные швы кладки вследствие слабого сцепления раствора с камнем могут рассматриваться как узкие вертикальные щели, у концов которых возникает концентрация напряжений. Таким образом, при сжатии кладки ее элементы находятся в весьма сложном напряженном состоянии, что является причиной значительной разницы между прочностью кладки и составляющих ее камня и раствора. Например, прочность кирпичной кладки на самом прочном растворе составляет обычно лишь 35-40% прочности кирпича. Наибольшее влияние на прочность кладки имеют:
а) прочность камня; увеличение предела прочности камня при сжатии в 2 раза повышает прочность кладки в 1,6-1,8 раза; прочность кирпичной кладки, кроме того, зависит в очень большой степени от сопротивления кирпича изгибу и срезу;
б) размеры камня; чем больше высота камня, тем больше момент сопротивления его сечения и, следовательно, тем меньше влияние сопротивления камня изгибу и срезу; с увеличением высоты камня прочность кладки, при прочих равных условиях, существенно повышается (рис. 1);
Рисунок 1. Зависимость между пределом прочности кладки R0 и раствора R2 (прочность камня R1=100 кГ/см2): 1 - кирпичная кладка; 2 - кладка из сплошных бетонных камней; 3 - кладка из пустотелых бетонных камней; 4 - кладка из крупных блоков из тяжелого бетона: 5 - то же, из легкого бетона; 6 - кладка из рваного бута
в) форма камня; в кладке из камней неправильной формы при сжатии очень велики местные концентрации напряжений и, кроме того, уменьшается сопротивление кладки сдвигу по плохо перевязанным сечениям; поэтому, например, кладка из рваного бутового камня высокой прочности даже на прочном растворе имеет предел прочности, равный лишь 2-6% прочности камня;
г) наличие пустот в камне; кладка из пустотелых камней, как правило, слабее кладки из сплошных камней при одинаковой прочности камня вследствие неравномерного распределения напряжений в кладке; степень этого уменьшения прочности зависит от формы и расположения пустот в кладке и для кладки из оптимальных типов пустотелых камней может быть минимальной;
д) прочность раствора (см. рис. 1); ее влияние значительно и тем больше, чем меньше высота камня; увеличение прочности раствора с 4 до 100 кГ/см2 повышает прочность обычной кирпичной кладки в 1,8-2 раза; имеет существенное значение также плотность раствора; применение пористых, сильносжимаемых растворов (например, на легких заполнителях) понижает прочность кладки на 10-30%;
е) качество кладки; неровная поверхность и неодинаковая плотность раствора в горизонтальных швах, плохое заполнение швов и т. п. значительно уменьшают прочность кладки; если принять за 100% установленный нормами средний предел прочности ручной кирпичной кладки при обычном ее качестве, то при более низком качестве прочность кладки составляет всего лишь 80-85%, а при очень высоком – 150-160%; вибрирование кирпичной кладки значительно улучшает заполнение швов, что является одной из причин большого повышения прочности виброкирпичной кладки по сравнению с обычной; применение жестких, трудноукладываемых растворов ухудшает качество швов и понижает прочность кладки на 10-15%;
ж) перевязка кладки; имеет весьма существенное значение при внецентренном приложении нагрузок, при действии горизонтальных нагрузок (например, сейсмических), при зимних кладках, выложенных методом замораживания и пр.;
з) сцепление раствора с камнем; имеет решающее значение в случаях, когда кладка работает на растяжение или на изгиб.
Наиболее вероятные (ожидаемые) пределы прочности при сжатии кладки среднего качества приведены в табл. 1. Они вычислены по формуле Л. И. Онищика, которая связывает прочность кладки с прочностями камня и раствора.
Таблица 1. Пределы прочности при сжатии каменных кладок R0
Кладка |
Марка камня |
Значения R0 при прочности раствора в кГ/см2 |
||
100 |
50 |
25 |
||
Кирпичная на тяжелых растворах с добавлением извести или глины |
150 |
45 |
35 |
30 |
100 |
35 |
30 |
25 |
|
75 |
30 |
25 |
22 |
|
Из сплошных бетонных камней при высоте ряда кладки 200-300 мм |
100 |
45 |
40 |
35 |
75 |
37 |
32 |
29 |
|
50 |
30 |
25 |
23 |
|
Крупноблочная; блоки из тяжелого бетона |
150 |
77 |
77 |
74 |
100 |
54 |
54 |
51 |
|
То же, из легкого бетона |
75 |
42 |
42 |
41 |
50 |
29 |
29 |
28 |
|
Из рваного бута |
400 |
30 |
23 |
16 |
200 |
22 |
17 |
13 |
|
Примечание. Пределы прочности бутовой кладки указаны для возраста 3 мес., для остальных кладок – на 28-й день. |
Вибрированная кладка кирпичных панелей может иметь прочность в 1,7-2 раза более высокую, чем прочность обычной кладки из тех же материалов.
Влияние длительности приложения нагрузки на сопротивление кладки сжатию зависит от величины напряжений. Длительное сопротивление R0дл сжатию ориентировочно равно: для кирпичной кладки на растворах марок 50 и выше - 0,8 R0, марок 10 и 25 - 0,7 R0, для кладок на известковом растворе - 0,6 R0. При напряжениях σ< R0дл кладка может нести нагрузку неограниченное время. При напряжениях 0,2 R0<σ< R0дл прочность кладки с течением времени даже несколько повышается (на 5-15%) в результате ее уплотнения под нагрузкой.
Сцепление раствора с кладкой зависит от прочности и усадки раствора, скорости поглощения камнем воды, чистоты поверхности камня, температуры и влажности воздуха, при которых твердеет кладка, содержания примесей в камне и растворе. Различают нормальное (к плоскости контакта раствора и камня) и касательное сцепление.
Осевое растяжение и растяжение при изгибе возможно по неперевязанным сечениям, например по горизонтальному шву (рис. 2, а), и по перевязанным, например по ступенчатым или плоским вертикальным сечениям (рис. 2,б). Сопротивление растяжению по неперевязанному сечению зависит исключительно от величины нормального сцепления, а сопротивление по перевязанным сечениям - главным образом от величины касательного сцепления, а иногда, при малой прочности камня, от его сопротивления растяжению.
Рисунок 2. Растяжные кладки: а – неперевязанных сечений; б – перевязанных сечений; 1 – ступенчатое сечение; 2 – плоское сечение
При расчете каменных конструкций, работающих в обычных условиях, разрешается учитывать только растяжение по перевязанным сечениям (например, при расчете силосных башен); сопротивление кладки, но неперевязанным сечениям принимается в расчет только при действии сейсмических нагрузок.
Во всех случаях, когда прочность конструкции обеспечивается ее сопротивлением растяжению, должны приниматься специальные меры при производстве работ, обеспечивающие надежное сцепление.
В обычных условиях растяжение при изгибе по неперевязанным сечениям учитывается только при расчете на внецентренное сжатие при больших эксцентрицитетах; в этом случае расчет растянутой зоны, с учетом растяжения, является лишь условным методом ограничения раскрытия горизонтальных швов (трещин).
Вернуться к списку | Распечатать |