На каждый день | Каменная кладка

ПРОЧНОСТЬ

Каменная кладка хорошо сопротивляется сжатию и относительно плохо - растяжению. Сопротивление кладки растяжению зависит от сцепления раствора с камнем, которое определяется рядом факторов и колеблется в широких пределах. Проектная прочность сцепления может быть обеспечена только при условии соблюдения ряда специальных производственных мероприятий. Поэтому каменные стены и столбы проектируют таким образом, чтобы эксцентрицитет не превышал 0,45h, где h высота сечения; при этом в расчете не учитывают сопротивление кладки растяжению, и внутреннее продольное усилие уравновешивается напряжениями одной лишь сжатой зоны.

Вследствие местных неровностей и неодинаковой плотности раствора в швах при сжатии кладки камни испытывают, кроме напряжений сжатия, также напряжения изгиба и среза. Если модуль упругости камня больше, чем раствора, то в поперечном направлении в камне возникают напряжения растяжения, а в растворе - сжатия. Вертикальные швы кладки вследствие слабого сцепления раствора с камнем могут рассматриваться как узкие вертикальные щели, у концов которых возникает концентрация напряжений. Таким образом, при сжатии кладки ее элементы находятся в весьма сложном напряженном состоянии, что является причиной значительной разницы между прочностью кладки и составляющих ее камня и раствора. Например, прочность кирпичной кладки на самом прочном растворе составляет обычно лишь 35-40% прочности кирпича. Наибольшее влияние на прочность кладки имеют:

а) прочность камня; увеличение предела прочности камня при сжатии в 2 раза повышает прочность кладки в 1,6-1,8 раза; прочность кирпичной кладки, кроме того, зависит в очень большой степени от сопротивления кирпича изгибу и срезу;

б) размеры камня; чем больше высота камня, тем больше момент сопротивления его сечения и, следовательно, тем меньше влияние сопротивления камня изгибу и срезу; с увеличением высоты камня прочность кладки, при прочих равных условиях, существенно повышается (рис. 1);

Зависимость между пределом прочности кладки и раствора

Рисунок 1. Зависимость между пределом прочности кладки R0 и раствора R2 (прочность камня R1=100 кГ/см2): 1 - кирпичная кладка; 2 - кладка из сплошных бетонных камней; 3 - кладка из пустотелых бетонных камней; 4 - кладка из крупных блоков из тяжелого бетона: 5 - то же, из легкого бетона; 6 - кладка из рваного бута

в) форма камня; в кладке из камней неправильной формы при сжатии очень велики местные концентрации напряжений и, кроме того, уменьшается сопротивление кладки сдвигу по плохо перевязанным сечениям; поэтому, например, кладка из рваного бутового камня высокой прочности даже на прочном растворе имеет предел прочности,  равный лишь 2-6% прочности камня;

г) наличие пустот в камне; кладка из пустотелых камней, как правило, слабее кладки из сплошных камней при одинаковой прочности камня вследствие неравномерного распределения напряжений в кладке; степень этого уменьшения прочности зависит от формы и расположения пустот в кладке и для кладки из оптимальных типов пустотелых камней может быть минимальной;

д) прочность раствора (см. рис. 1); ее влияние значительно и тем больше, чем меньше высота камня; увеличение прочности раствора с 4 до 100 кГ/см2 повышает прочность обычной кирпичной кладки в 1,8-2 раза; имеет существенное значение также плотность раствора; применение пористых, сильносжимаемых растворов (например, на легких заполнителях) понижает прочность кладки на 10-30%;

е) качество кладки; неровная поверхность и неодинаковая плотность раствора в горизонтальных швах, плохое заполнение швов и т. п. значительно уменьшают прочность кладки; если принять за 100% установленный нормами  средний  предел  прочности  ручной  кирпичной кладки при обычном ее качестве, то при более низком качестве прочность кладки составляет всего лишь 80-85%, а при очень высоком – 150-160%; вибрирование кирпичной кладки значительно улучшает заполнение швов, что является одной из причин большого повышения прочности виброкирпичной кладки по сравнению с обычной; применение жестких, трудноукладываемых растворов ухудшает качество швов и понижает прочность кладки на 10-15%;

ж) перевязка кладки; имеет весьма существенное значение при внецентренном приложении нагрузок, при действии горизонтальных нагрузок (например, сейсмических), при зимних кладках, выложенных методом замораживания и пр.;

з) сцепление раствора с камнем; имеет решающее значение в случаях, когда кладка работает на растяжение или на изгиб.

Наиболее вероятные (ожидаемые) пределы прочности при сжатии кладки среднего качества приведены в табл. 1. Они вычислены по формуле Л. И. Онищика, которая связывает прочность кладки с прочностями камня и раствора.

Таблица 1. Пределы прочности при сжатии каменных кладок R0
Кладка
Марка камня
Значения R0 при прочности раствора в кГ/см2
100
50
25

Кирпичная на тяжелых растворах с добавлением извести или глины

150

45

35

30

100

35

30

25

75

30

25

22

Из сплошных бетонных камней при высоте ряда кладки 200-300 мм

100

45

40

35

75

37

32

29

50

30

25

23

Крупноблочная; блоки из тяжелого бетона

150

77

77

74

100

54

54

51

То же, из легкого бетона

75

42

42

41

50

29

29

28

Из рваного бута

400

30

23

16

200

22

17

13

Примечание. Пределы прочности бутовой кладки указаны для возраста 3 мес., для остальных кладок – на 28-й день.

Вибрированная кладка кирпичных панелей может иметь прочность в 1,7-2 раза более высокую, чем прочность обычной кладки из тех же материалов.

Влияние длительности приложения нагрузки на сопротивление кладки сжатию зависит от величины напряжений. Длительное сопротивление R0дл сжатию ориентировочно равно: для кирпичной кладки на растворах марок 50 и выше - 0,8 R0, марок 10 и 25 - 0,7 R0, для кладок на известковом растворе - 0,6 R0. При напряжениях σ< R0дл кладка может нести нагрузку неограниченное время. При напряжениях 0,2 R0<σ< R0дл прочность кладки с течением времени даже несколько повышается (на 5-15%) в результате ее уплотнения под нагрузкой.

Сцепление раствора с кладкой зависит от прочности и усадки раствора, скорости поглощения камнем воды, чистоты поверхности камня, температуры и влажности воздуха, при которых твердеет кладка, содержания примесей в камне и растворе. Различают нормальное (к плоскости контакта раствора и камня) и касательное сцепление.

Осевое растяжение и растяжение при изгибе возможно по неперевязанным сечениям, например по горизонтальному шву (рис. 2, а), и по перевязанным, например по ступенчатым или плоским вертикальным сечениям (рис. 2,б). Сопротивление растяжению по неперевязанному сечению зависит исключительно от величины нормального сцепления, а сопротивление по перевязанным сечениям - главным образом от величины касательного сцепления, а иногда, при малой прочности камня, от его сопротивления растяжению.

Растяжные кладки

Рисунок 2. Растяжные кладки: а – неперевязанных сечений; б – перевязанных сечений; 1 – ступенчатое сечение; 2 – плоское сечение

При расчете каменных конструкций, работающих в обычных условиях, разрешается учитывать только растяжение по перевязанным сечениям (например, при расчете силосных башен); сопротивление кладки, но неперевязанным сечениям принимается в расчет только при действии сейсмических нагрузок.

Во всех случаях, когда прочность конструкции обеспечивается ее сопротивлением растяжению, должны приниматься специальные меры при производстве работ, обеспечивающие надежное сцепление.

В обычных условиях растяжение при изгибе по неперевязанным сечениям учитывается только при расчете на внецентренное сжатие при больших эксцентрицитетах; в этом случае расчет растянутой зоны, с учетом растяжения, является лишь условным методом ограничения  раскрытия  горизонтальных швов (трещин).

Поделитесь ссылкой в социальных сетях